Charge-Induced Spin Torque in Anomalous Hall Ferromagnets.
نویسندگان
چکیده
We demonstrate that spin-orbit coupled electrons in a magnetically doped system exert a spin torque on the local magnetization, without a flowing current, when the chemical potential is modulated in a magnetic field. The spin torque is proportional to the anomalous Hall conductivity, and its effective field strength may overcome the Zeeman field. Using this effect, the direction of the local magnetization is switched by gate control in a thin film. This charge-induced spin torque is essentially an equilibrium effect, in contrast to the conventional current-induced spin-orbit torque, and, thus, devices using this operating principle possibly have higher efficiency than the conventional ones. In addition to a comprehensive phenomenological derivation, we present a physical understanding based on a model of a Dirac-Weyl semimetal, possibly realized in a magnetically doped topological insulator. The effect might be realized also in nanoscale transition materials, complex oxide ferromagnets, and dilute magnetic semiconductors.
منابع مشابه
Current-induced switching in a magnetic insulator.
The spin Hall effect in heavy metals converts charge current into pure spin current, which can be injected into an adjacent ferromagnet to exert a torque. This spin-orbit torque (SOT) has been widely used to manipulate the magnetization in metallic ferromagnets. In the case of magnetic insulators (MIs), although charge currents cannot flow, spin currents can propagate, but current-induced contr...
متن کاملSpin-motive forces and current-induced torques in ferromagnets
In metallic ferromagnets, the spin-transfer torque and spin-motive force are known to exhibit a reciprocal relationship. Recent experiments on ferromagnets with strong spin-orbit coupling have revealed a rich complexity in the interaction between itinerant charge carriers and magnetization, but a full understanding of this coupled dynamics is lacking. Here, we develop a general phenomenology of...
متن کاملNonlinear dynamics induced anomalous Hall effect in topological insulators
We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can c...
متن کاملAn antidamping spin-orbit torque originating from the Berry curvature.
Magnetization switching at the interface between ferromagnetic and paramagnetic metals, controlled by current-induced torques, could be exploited in magnetic memory technologies. Compelling questions arise regarding the role played in the switching by the spin Hall effect in the paramagnet and by the spin-orbit torque originating from the broken inversion symmetry at the interface. Of particula...
متن کاملSpin-Hall-Effect-Assisted Electroresistance in Antiferromagnets via 105 A/cm2 dc Current
Antiferromagnet (AFM) spintronics with reduced electrical current is greatly expected to process information with high integration and low power consumption. In Pt/FeMn and Ta/FeMn hybrids, we observe significant resistance variation (up to 7% of the total resistance) manipulated by 10(5) A/cm(2) dc current. We have excluded the contribution of isotropic structural effects, and confirmed the cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 115 12 شماره
صفحات -
تاریخ انتشار 2015